Boeing Wins USAF Tanker Deal

The Pentagon recently announced, that Boeing has won the $35 billion USAF tanker contract. The contract means Boeing will initially build 179 of its 767-based KC-46A tankers to replace the Air Force KC-135 tankers.
Boeing must design, develop, manufacture and deliver the first 18 combat-ready airplanes by 2017. The first tanker is scheduled to fly in 2015.

The contest was not just about the better plane but also about monopoly and immense lobbying – Boeing spent more than $17.8 million on lobbying, just in 2010.
In 2008 U.S. Air Force already selected the competing KC-45 Tanker offered by EADS/Northrop Grumman but the selection was revised later after protests filed by Boeing.

EADS has three days to ask for a debriefing as to why exactly it lost. That debriefing must take place within five days, after which EADS has another five days to decide if it wants to formally protest the decision.

USAF Boeing KC-46A Tanker

EADS North America officials expressed disappointment and concern over the announcement that the US had selected a “high-risk, concept aircraft over the proven, more capable KC-45 tanker”.

“This is certainly a disappointing turn of events, and we look forward to discussing with the Air Force how it arrived at this conclusion,” said EADS North America Chairman Ralph D. Crosby, Jr. “For seven years our goal has been to provide the greatest capability to our men and women in uniform, and to create American jobs by building the KC-45 here in the U.S. We remain committed to those objectives.”

If selected, EADS North America had committed to build the KC-45 at a new production facility in Mobile, Alabama, with a U.S. supplier base of nearly a thousand American companies.

“With a program of such complexity, our review of today’s decision will take some time,” Crosby said. “There are more than 48,000 Americans who are eager to build the KC-45 here in the U.S., and we owe it to them to conduct a thorough analysis.”

Sources: Boeing, Airbus
Image: Boeing

Photos – 747-8 Intercontinental Unveiled

Boeing today unveiled its brand new Boeing 747-8 Intercontinental – and man, she’s a beauty!

“The new 747-8 Intercontinental features the latest in innovative technologies — applying many of the breakthroughs also found on the 787 Dreamliner,” said Boeing Commercial Airplanes President and Chief Executive Officer Jim Albaugh. “We think our customers will value the low operating costs and passengers will enjoy the comfort of the striking new interior.”

“The 747-8 Intercontinental will be a great complement to our fleet, fitting nicely into the 400-seat category, improving our fleet’s eco-efficiency even further,” said Nico Buchholz, executive vice president, Lufthansa Group Fleet Management. “As launch customer, we are looking forward to welcoming this new aircraft to our fleet next year as it adds to our ongoing fleet modernization and environmental efforts.”

Korean Air and VIP customers have joined launch customer Lufthansa in ordering a total of 33 747-8 Intercontinentals. First delivery of the 747-8 Intercontinental is scheduled for the fourth quarter.

Boeing 747-8 Intercontinental Premiere
Boeing 747-8I Orange Livery
Boeing 747-8 Intercontinental Unveiled

The 747-8 Intercontinental will have the lowest seat-mile cost of any large commercial jetliner, with 12 percent lower costs than its predecessor, the 747-400. The airplane provides 16 percent better fuel economy, 16 percent less carbon emissions per passenger and generates a 30 percent smaller noise footprint than the 747-400. The 747-8 Intercontinental applies interior features from the 787 Dreamliner that includes a new curved, upswept architecture giving passengers a greater feeling of space and comfort, while adding more room for personal belongings.

The airplane unveiled today is painted in a new Sunrise livery of red-orange that only will appear on the first 747-8 Intercontinental and is a significant departure from Boeing’s standard blue. The new color palette honors many key Boeing customers whose cultures recognize these colors as symbols of prosperity and good luck.

Source: Boeing
Photos: Boeing

Rollout of 1000th Boeing 767

On Feb. 2, 2011 Boeing marked an important milestone in the company’s history. Boeing celebrated the rollout of the 1000th 767 airplane.

The 1,000th airplane is a 767-300ER (extended range) passenger model for ANA (All Nippon Airways) and was the final 767 to complete assembly on the current production line. Final production work already is underway on the 1,001 unit in a new, smaller bay that repositions the production line toward a leaner, more efficient operation.

Photo
1000th Boeing 767 - ANA (All Nippon Airways) Boeing 767-300ER

Video

Boeing has offered the 767 as the platform for its NewGen Tanker if it wins the U.S. Air Force KC-X Tanker competition. A decision on the contract award is expected early this year.

The 767 family is settled in the 200- to 300-seat market. The 767 family includes three passenger models – the 767-200ER, 767-300ER and 767-400ER – and a medium-widebody freighter, which is based on the 767-300ER fuselage.

Source: Boeing
Photo&Video: Boeing

Airbus – 10000th Order

On Monday Airbus announced its 10,000th order with a firm contract from Virgin America for 60 A320s, including 30 A320neo aircraft. This is the first firm order for the A320 new engine option; therefore Virgin America becomes the launch customer for the A320neo. This formalizes and expands an initial commitment given at the Farnborough International Airshow in July 2010 with the inclusion of the A320neo as a new development in that deal. The 30 A320s will feature fuel-saving large wing tip devices called Sharklets. Virgin America has not yet announced its engine choice on the newly ordered A320s or the A320neo. Seating configuration on the aircraft will be the same as its existing A320 fleet (146-149 seats) in a two-class configuration.

Virgin America Airbus A320neo

“At just three years old and at a time when many carriers are contracting, we’re pleased to be growing and bringing our award-winning service to new markets,” said Virgin America President and CEO David Cush. “We credit a great deal of our success to date to having the right aircraft. The low operating costs, cabin comfort and carbon-efficient design of our all-new Airbus A320 fleet has helped fuel our growth and success in the North American market – and we’re confident the A320neo will only build on that.”

“We hit our 5000th order in August of 2004 – after more than 30 years. To achieve the 10,000th order just over six years later is a ringing endorsement of our product line,” said Tom Enders, Airbus President and CEO. “And it gives a strong boost to our new, eco-efficient A320neo when ‪Virgin America, one of our newest and trendiest customers, places the first firm order, for which we are extremely grateful.”

The A320neo responds to heightened customer environmental interest, offering a 15 percent reduction in fuel consumption. The option was launched in late 2010 for first deliveries in early 2016. Airlines have the choice between CFM International’s LEAP-X engine and Pratt & Whitney’s PurePower PW1100G engine. Each variant of the A320neo incorporates Sharklet wing tip devices. In addition to fuel savings, the A320neo will benefit from a double-digit reduction in NOx emissions, reduced engine noise, lower operating costs and up to 500 nautical miles more range or two metric tons more payload. The A319, A320 and A321 models on which the new engine option is offered will have 95 percent airframe commonality with the A320 Family, thus the A320neo will fit seamlessly into the existing Virgin America fleet.

Since the first Airbus aircraft went into service in 1974 with Air France, Airbus has seen sales of its aircraft grow steadily. By 1989, after its first 15 years in operation, Airbus had sold 1,000 aircraft. Less than half that time again, just seven years later in 1996, sales had risen to 2,000. Sales of Airbus aircraft had reached 3,000 in 1998, again cutting the time it took to sell another 1,000 planes by more than half. And by 2000 a total of 4,000 aircraft had been sold to the market.

Source: Airbus
Image: Airbus

Boeing 787 Dreamliner – New First Delivery Date

Boeing today announced a new date for first delivery of the Boeing 787 Dreamliner. The plane maker expects delivery of the first 787 in the third quarter of this year. The new delivery date reflects the impact of an in-flight electrical fire on ZA002 during testing and subsequently modifications to electrical power distribution panels in the flight test and production airplanes.

Boeing 787 Dreamliner In Flight

“This revised timeline for first delivery accommodates the work we believe remains to be done to complete testing and certification of the 787,” said Scott Fancher, vice president and general manager of the 787 program. “We’ve also restored some margin in the schedule to allow for any additional time that may be needed to complete certification activities,” Fancher said.

The 787 program has been gradually returning individual airplanes to the flight test program. After receiving interim software and hardware improvements, four flight test airplanes have been subjected to extensive ground testing and a thorough review to ensure their readiness to return to flight. The remaining two airplanes will be returning to flight in the days ahead to bring the full flight test fleet back up to flight status.

Source: Boeing
Image: Boeing

Iran to Ban Tupolev Tu-154

News agencies are reporting that Iranian authorities will ban flights of Russian-made Tupolev Tu-154 aircraft from February 20.

“All Iranian airline companies which have Tupolev-154 in their fleet are required to end operation of their Tupolevs by February 19,” the country’s civil aviation chief told media.
Four Iranian air carriers – Iran Air Tour, Kish Air, Eram and Taban – who have a total of 17 Tu-154 jets in their fleets, were instructed to ground their Tupolevs by February 19 and replace them with other planes. Which planes that might be is unclear.

“The use of Tu-154 planes is banned in connection with recent incidents involving those aircraft,” the civil aviation chief said in his letter to the air carriers.
Iranian authorities criticized the Russian Tupolev manufacturer for refusing to respond to the Iranian Civil Aviation Organization’s request in connection with recent Tu-154 accidents.

Over the last 10 years, 5 Tupolev Tu-154 crashed in Iran, killing more than 300 people.

Rossiya Tupolev Tu-154

In an effort to renew its outdated civil aviation fleet, Iran plans to import 13 McDonnell Douglas MD-80 and 6 Airbus planes in the near future. The Islamic Republic will also start the domestic production of the IrAn-140 passenger plane, that is based on the Antonov An-140.

Iran is treated by international sanctions (UN and US) which, at some level, prohibit import of modern airplanes, spare parts and any other “aviation related material”.

Source: RIA Novosti
Image: Wikipedia

Video – Chengdu J-20 First Flight

The Chengdu J-20, first Chinese 5th generation stealth fighter, today successfully completed its first flight! According to Chineses sources the jet fighter made a 15-minute flight in southwest China’s City of Chengdu.

The Chengdu J-20 is a twin-engine multi-role heavy fighter with stealth capability and maneuverability as compared to American F-22 Raptor and Russian Sukhoi T-50 PAK FA.

Chengdu J-20 First Flight - Chinese 5th Generation Stealth Jet Fighter

Video:

Credits: http://www.defenceaviation.com

Iran Air Boeing 727 Crashed in Northern Iran (Video)

An Iran Air Boeing 727-286 (EP-IRP) crashed yesterday evening near Urmia (Orumiyeh) Airport (OMH), Iran, killing at least 77 souls on-board.
Flight IR277 was bound from Tehran-Mehrabad Airport (THR) to Urmia. The 36 year old plane crashed during an emergency landing in heavy snow storm after the pilots reported technical problems.

Video

Ongoing international sanctions on the country are blamed for the recent history of deadly aviation accidents. United Nations Security Council Resolution 1929 still prohibits international supply of aircraft, strongly needed aircraft parts as well as “related material” to Iran.

Spotted: China’s Chengdu J-20 Stealth Fighter?

Aviation Week is reporting that Chinese aviation enthusiasts have spotted a mysterious jet fighter at Chengdu Airport, China. It’s believed that the plane might be the infamous J-20 – the first Chinese stealth fighter, built by Chengdu Aircraft Industry Corporation (CAC).
Judging from the pictures you can’t deny big similarities to an F-22 and the Sukhoi T-50 PAK FA. It seems to be much larger than an F-22 though.

Chengdu J-20 Chinese Stealth Fighter
More photos:
UPDATE:
http://www.aviationweek.com/aw/blogs/defense/index.jsp?plckController=Blog&plckBlogPage=BlogViewPot…

http://img337.imageshack.us/img337/1466/35mnl29.jpg
http://i51.tinypic.com/23hm914.jpg
http://i.imgur.com/kFIPL.jpg
http://img694.imageshack.us/img694/6069/j205poss.jpg
http://sitelife.aviationweek.com/ver1.0/Content/images/store/9/1/d9382d54-6099-4a2b-b174-02387a5012d8.Full.jpg

The Chengdu J-20 was first disclosed by US Office of Naval Intellegence (ONI) in 1997 as XXJ, J-20 (?) and is a 5th generation fighter to enter service around 2015. The jet is believed to be a twin-engine multi-role heavy fighter with enhanced stealth capability and maneuverability comparable to American F-22. It was speculated that 601 Institute was working on a “tri-plane” design based on canard/conventional layout/V-shape tailfin while 611 Institute working on a design based on canard/tailless delta wing/all moving V-shape tailfin/side DSI/bump inlet layout. All designs were expected to feature an internal weapon bay to reduce its radar footprint. The overall performance of J-20 is thought to be superior to Russian T-50 but still inferior to Amereican F-22. In August 2008 it was reported that 611 Institute was selected to be the main contractor for the development of J-20 and 601 Institute as the sub-contractor. One rumor in May 2010 suggested that 611 Institute started to construct the first prototype, which is expected to fly by 2012. The latest rumor claimed that the first two prototypes have been constructed and the first high-speed taxiing trial took place on December 22, 2010.

Sources:
aviationweek.com
cnair.top81.cn

Qantas QF32 Preliminary Report

Today a preliminary report on Qantas flight QF32 (Airbus A380 VH-OQA) was released by Australian Aviation Safety Bureau (ATSB). On 4 November the flight sustained an uncontained failure of the Intermediate Pressure (IP) turbine disc on engine No 2.

The report reveals many interesting details about sustained damage, flight crew response, a brief history of the flight, cause of the incident and data obtained from flight data recorder (FDR). (link at the bottom)

Qantas QF32 Airbus A380 Engine Damage

Following a short summary of events that occured on-board

  • The crew reported that, while maintaining 250 kts in the climb and passing 7,000 ft above mean sea level (AMSL), they heard two, almost coincident ‘loud bangs’.
  • The crew reported a slight yaw and that the aircraft immediately levelled off in accordance with the selection of altitude hold
  • PIC noticed that the autothrust system was no longer active
  • Electronic Centralised Aircraft Monitor (ECAM) system displayed a message indicating an “overheat” warning in the No 2 engine turbine. Soon after, multiple ECAM messages started to be displayed. The PIC confirmed with the flight crew that he was maintaining control of the aircraft and called for the commencement of the requisite ECAM actions by the FO in response to those messages.
  • Affected engine’s thrust lever was moved to IDLE and a PAN radio call was transmitted to Changi air traffic control (ATC)
  • Warning indicating a fire in the No 2 engine that displayed for about 1 to 2 seconds; the ECAM then reverted back to the overheat warning
  • The crew decided to shut down No 2 engine; after they had selected the ENG 2 master switch OFF, the ECAM displayed a message indicating that the No 2 engine had failed
  • The crew reported assessing that there was serious damage and discharged one of the engine’s two fire extinguisher bottles into the engine
  • Flight crew did not receive confirmation that the fire extinguisher bottle had discharged. They repeated the procedure for discharging the fire extinguisher and again did not receive confirmation that it had discharged.
  • Crew followed the procedure for discharging the second fire extinguisher bottle into the No 2 engine. After completing that procedure twice, they did not receive confirmation that the second bottle had discharged.
  • Continuation with engine failure procedure, which included initiating an automated process of fuel transfer from the aircraft’s outer wing tanks to the inner tanks.
  • Engine display for the No 2 engine had changed to a failed mode
  • Engine display for Nos 1 and 4 engines had reverted to a degraded mode (indicates that some air data or engine parameters are not available)
  • Display for No 3 engine indicated that the engine was operating in an alternate mode as a result of actioning an ECAM procedure
  • Crew recalls following systems warnings on ECAM after failure of engine No 2:
    • Engines No 1 and 4 operating in a degraded mode
    • GREEN hydraulic system – low system pressure and low fluid level (one of two primary hydraulic systems – power is supplied by engine-driven pumps on Nos 1 and 2 engines)
    • YELLOW hydraulic system – engine No 4 pump errors (second of two primary hydraulic systems – power is supplied by engine-driven pumps on Nos 3 and 4 engines)
    • Failure of the alternating current (AC) electrical No 1 and 2 bus systems
    • Flight controls operating in alternate law (reduces some of the flight control protections that are available under normal law)
    • Wing slats inoperative
    • Flight controls – ailerons partial control only
    • Flight controls – reduced spoiler control
    • Landing gear control and indicator warnings
    • Multiple brake system messages
    • Engine anti-ice and air data sensor messages
    • Multiple fuel system messages, including a fuel jettison fault
    • Centre of gravity messages
    • Autothrust and autoland inoperative
    • No 1 engine generator drive disconnected
    • Left wing pneumatic bleed leaks
    • Avionics system overheat
  • Qantas QF32 Airbus A380 Electrical Wiring Damage
    Photo: Damage to electrical wiring located in the leading edge of the left wing (punctured by debris)
  • Customer service manager (CSM) attempted to contact the flight crew, including through use of the EMERGENCY contact selection on the cabin interphone system. This activated the flight deck warning horn. No associated ECAM message was displayed, the flight crew associated the emergency contact warning horn with the continuously-sounding warnings from the ECAM system and cancelled the horn.
  • holding at the present altitude while processing ECAM messages and associated procedures – no immediate return to Singapore – needed holding pattern for about 30 minutes
  • 20 NM (37 km) racetrack holding pattern at 7,400 ft east of Singapore
  • ATC acknowledged crew that a number of aircraft components found on Indonesian island of Batam
  • Second Officer (SO) was dispatched into the cabin to visually assess the damage to the No 2 engine; a passenger, who was also a pilot for the operator, brought the SO’s attention to a view of the aircraft from the vertical fin-mounted camera that was displayed on the aircraft’s in-flight entertainment system. That display appeared to show some form of fluid leak from the left wing.
  • Qantas QF32 Airbus A380 Fuel Tank Damage
    Photo: Left wing fuel tank damage (punctured by debris)
  • SO proceeded to lower deck on the left side of the aircraft to observe damage to the left wing and fuel leaking. The fluid leak appeared to be coming from underneath the left wing, in the vicinity of the No 2 engine and that the fluid trail was about 0.5 m wide. The SO could not see the turbine area of the No 2 engine from any location within the cabin.
  • Elected not to initiate further fuel transfer – were unsure of the integrity of the fuel system. Could not jettison fuel due to ECAM fuel jettison fault
  • Noticed that the aircraft’s satellite communications system had failed and received ACARS message from aircraft operator that indicated that multiple failure messages had been received from the aircraft
  • SCC and PIC made a number of public address (PA) announcements to the passengers indicating that the aircraft had sustained a technical failure, and that the crew were addressing the issues associated with that failure. Subsequently, the SCC and SO returned to the cabin on numerous occasions to visually assess the damage on the left side of the aircraft, and to inspect the right side of the aircraft, and to provide feedback to the cabin crew and passengers.
  • It took about 50 minutes to complete all initial procedures associated with ECAM messages. During that time, the autopilot was engaged.
  • They assessed the aircraft systems to determine those that had been damaged, or that were operating in a degraded mode. They considered that the status of each system had the potential to affect the calculation of the required parameters for the approach and landing. The crew also believed that the failure may have damaged the No 1 engine, and they discussed a number of concerns in relation to the lateral and longitudinal fuel imbalances that had been indicated by the ECAM.
  • Input of affected aircraft systems into landing distance performance application (LDPA) to determine the landing distance required for an overweight landing to runway 20C at Changi Airport of about 440 t, which was 50 t above the aircraft’s maximum landing weight.
    Based on the initial inputs to the LDPA by the flight crew, the LDPA did not calculate a landing distance. After discussion, and in the knowledge that the runway at Changi was dry, the crew elected to remove the inputs applicable to a landing on a wet runway and re-ran the calculation. This second calculation indicated that a landing on runway 20C was feasible, with 100 m of runway remaining. The crew elected to proceed on the basis of that calculation and advised ATC to that effect.
  • Crew advised ATC that they would require emergency services to meet the aircraft at the upwind end of the runway, and that the aircraft was leaking fluid from the left wing that was likely to include hydraulic fluid and fuel.
  • Crew discussed the controllability of the aircraft and conducted a number of manual handling checks at the holding speed. The crew decided that the aircraft remained controllable
  • Lowering of flaps – remained controllable
  • As result of the landing gear-related ECAM messages, the landing gear was lowered using the emergency extension procedure and a further controllability check was conducted
  • Crew was aware of: reverse thrust was only available from the No 3 engine, no leading edge slats were available, there was limited aileron and spoiler control, anti-skid braking was restricted to the body landing gear only, there was limited nosewheel steering and that the nose was likely to pitch up on touchdown. An ECAM message indicated that they could not apply maximum braking until the nosewheel was on the runway.
  • The wing flaps were extended to the No 3 position
  • The PIC was aware that accurate speed control on final would be important to avoid either an stall condition, or a runway overrun. Consequently, the PIC set the thrust levers for Nos 1 and 4 engines to provide symmetric thrust, and controlled the aircraft’s speed with the thrust from No 3 engine.
  • Autopilot disconnected a couple of times during early part of approach as the speed reduced to 1 kt below approach speed. The PIC initially acted to reconnect the autopilot but, when it disconnected again at about 1,000 ft, he elected to leave it disconnected and to fly the aircraft manually for the remainder of the approach. Due to the limited landing margin available, the CC reminded the PIC that the landing would have to be conducted with no flare and that there would be a slightly higher nose attitude on touchdown.
  • Cabin crew was briefed to prepare for a possible runway overrun and evacuation
  • Aircraft touched down, the nosewheel touched down within about 6 seconds, the PIC commenced maximum braking and selected reverse thrust on No 3 engine. The flight crew observed that the deceleration appeared to be ‘slow’ in the initial landing roll, but that with maximum braking and reverse thrust, the aircraft began to slow. The PIC recalled feeling confident that, as the speed approached 60 kts, the aircraft would be able to stop in the remaining runway distance. In consequence, the No 3 engine was gradually moved out of maximum reverse thrust. Manual braking was continued and the aircraft came to a stop about 150 m from the end of the runway. The aircraft was met by emergency services.
  • After landing, crew commenced to shut down the remaining engines. When the final engine master switch was selected OFF, the aircraft’s electrical system went into a configuration similar to the emergency electrical power mode. That rendered many of the aircraft’s cockpit displays inoperative, and meant that there was only one very high frequency (VHF) radio available to the crew.
  • Just before the cockpit displays went blank, a number of the flight crew noticed that the left body landing gear brake temperature was indicating 900 °C, and rising. After some initial confusion about which radio was functioning, the FO contacted the emergency services fire commander, who asked for the No 1 engine to be shut down. The FO responded that they had done so already, but was advised again by the fire commander that the engine continued to run.
    • recycled the engine master switch to OFF but the engine did not shut down
    • use of emergency shutoff and fire extinguisher bottles but the engine did not shut down
    • tried to activate a series of circuit breakers in the aircraft’s equipment bay, the engine did still not shut down
    • attempts were made to reconfigure the transfer valves in the aircraft’s external refuelling panel, in an effort to transfer fuel out of the No 1 feed tank, and starve the No 1 engine of fuel. However, due to the lack of electrical power, that was not possible.
    • Ground engineers attended the aircraft and attempted a number of methods to shut down the engine, each without success
    • Finally, the decision was taken to drown the engine with fire-fighting foam from the emergency services fire vehicles. The No 1 engine was reported to have finally been shut down about 2 hours and 7 minutes after the aircraft landed.
  • Fire commander indicated that there appeared to be fuel leaking from the aircraft’s left wing. The FO advised the commander of the hot brakes, and requested that fire retardant foam be applied over that fuel. The fire commander complied with that request
  • four of the wheels on the left body landing gear had deflated
  • 55 minutes after landing – after the fire risk had decreased – passengers disembarked via stairs on the right side of the aircraft, using only a single door (No 2 main deck forward door), to keep remaining doors clear in case of the need to deploy the escape slides.
  • Disembarking took about 1 hour


Download: ATSB Preliminary Report (PDF)

Source/Photos: ATSB